Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex.

نویسندگان

  • Anubhuthi Goel
  • Hey-Kyoung Lee
چکیده

It is well established that sensory cortices of animals can be modified by sensory experience, especially during a brief early critical period in development. Theoretical analyses indicate that there are two synaptic plasticity mechanisms required: input-specific synaptic modifications and global homeostatic mechanisms to provide stability to neural networks. Experience-dependent homeostatic synaptic plasticity mechanisms have subsequently been demonstrated in the visual cortex of juvenile animals. Here, we report that experience-dependent homeostatic synaptic plasticity persists through adulthood in the superficial layers of the mouse visual cortex. We found that 2 d of visual deprivation in the form of dark rearing is necessary and sufficient to cause an increase in AMPA receptor-mediated miniature EPSC amplitude in layer 2/3 neurons. This increase was rapidly reversed by 1 d of light exposure. This reversible change in synaptic strength persisted in adult mice past the critical period for ocular dominance plasticity, which is reported to end at approximately 1 month of age in rodents. Interestingly, the mechanism of homeostatic synaptic modifications in 3-month-old mice differed from that in young mice (3 weeks old) in that the multiplicative nature of synaptic scaling is lost. Our results demonstrate that the superficial layers of adult mouse visual cortex retain the ability to undergo reversible experience-dependent homeostatic synaptic plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.

Visual experience scales down excitatory synapses in the superficial layers of visual cortex in a process that provides an in vivo paradigm of homeostatic synaptic scaling. Experience-induced increases in neural activity rapidly upregulates mRNAs of immediate early genes involved in synaptic plasticity, one of which is Arc (activity-regulated cytoskeleton protein or Arg3.1). Cell biological stu...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex

Alzheimer's disease (AD) is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ) peptides. Studies over the past few decades suggest that Aβ is produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions for β- and γ-secretases, the two...

متن کامل

Effects of visual deprivation on synaptic plasticity of visual cortex

  TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 25  شماره 

صفحات  -

تاریخ انتشار 2007